## Graphing

## Graphing

- Graphing is an important procedure used by scientist to display the data that is collected during a controlled experiment. There are three main types of graphs:
- Pie/circle graphs: Used to show parts of a whole.
- Bar graphs: Used to compare amounts.
- Line graphs: Use to show the change of one piece of information as it relates to another change




## Parts of a Graph

- Title: Summarizes information being represented in ANY graph.
- Manipulated Variable: The variable that is tested by the experimenter, such as, time, dates, depth, and temperature. This is placed on the $\mathbf{X}$ axis.
- Responding Variable: The variable that is measured in an experiment. It is the result of what happens as time, dates, depth and temperature are changed. This is placed on the $\mathbf{Y}$ axis.



## Scales for each Variable

- In constructing a graph, one needs to know where to plot the points representing the data.
- In order to do this a scale must be employed to include all the data points.
- The scales should start with 0 and climb in intervals such as, multiples of $2,5,10,20,25$, etc
- You determine what your intervals are by looking at your data




## Making A Graph Example

Using the data below about the growth of bacteria at different temperatures; determine what intervals you want to use.

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |


| Temperature <br> $\left({ }^{\circ} \mathrm{C}\right)$ | \# of Bacteria |
| :---: | :---: |
| 0 | 0 |
| 10 | 3 |
| 20 | 7 |
| 30 | 15 |
| 40 | 20 |
| 50 | 8 |
| 60 | 5 |
| 70 | 0 |

