
Scientific Measurements: Length, Mass, Volume, and Density

SI Units of Measurement

- Many of the units you're familiar with (inches, feet, and degrees Fahrenheit) are not used in science.
- Scientists use a set of measuring units called SI, or the <u>International System of Units</u> (also known as the metric system)

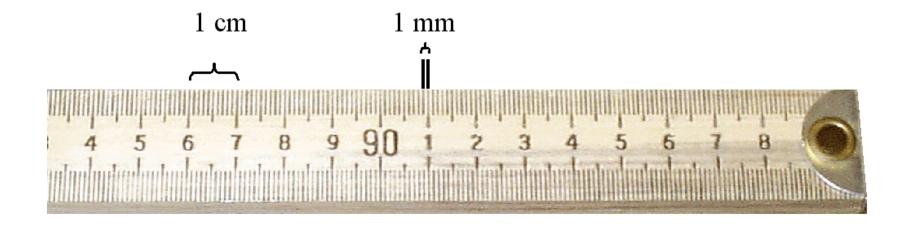
Why do you think we use the metric system?

Measurements & Units

 For a measurement to make sense, it needs a number and a unit

Base Units

There are 7 metric units, known as <u>base units</u>

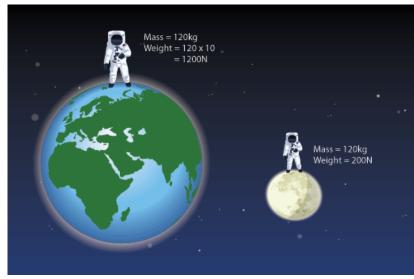

SI Base Units				
Quantity	Unit	Symbol		
Length	meter	m		
Mass	kilogram	kg		
Temperature	kelvin	K		
Time	second	S		
Amount of substance	mole	mol		
Electric current	ampere	Α		
Luminous intensity	candela	cd		

Length

- The meter is the <u>basic unit of length</u> in the metric system
- 1 meter = 39.4 inches
- To measure longer distances, you use the kilometer
 - There are 1000 meters in a kilometer

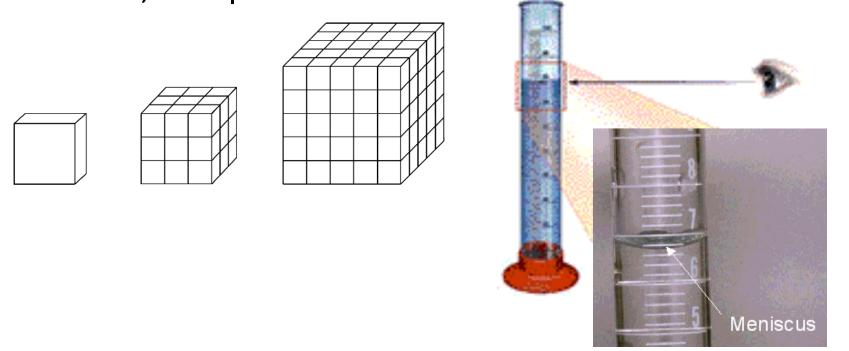
Length (continued)

- Meters are divided into centimeters
 - there are 100 centimeters in a meter
 - to measure something <u>smaller than a meter</u>, you would use centimeters
- Centimeters are divided into millimeters



Mass & Weight

- Mass: the amount of matter in an object
 - Ex: a truck has more mass than a toy car
- Mass is not the same as weight
- Weight is your mass multiplied by gravity
 - Your weight is a measure of <u>how much gravity is</u>
 <u>pulling you down</u>



Volume

- Volume: amount of space an object takes up
- The *liter* is the basic unit of volume
- The <u>milliliter</u> is the unit for small volumes of liquid

 The <u>cubic centimeter (cm³)</u> is the unit for small volumes of solid, or liquid.

Density

• **Density**: the mass per volume of an object

Density =
$$\frac{\text{Mass}}{\text{Volume}}$$

Metric Prefixes

	Many	Kids	Have	D ied	B y	D oing	Conversion	Math
Prefix	mega-	kilo-	hecto-	deka-	Base Unit: gram meter second mole kelvin ampere	deci-	centi-	milli-
Math Equality	1,000,000	1,000	100	10	1	10	100	1,000
Decimal Places	6	3	2	1	-	1	2	3
			В	Big to Small - Dec	cimal to Right			
	BIG →	\rightarrow \rightarrow -	→ → -	→ → →	\rightarrow \rightarrow \rightarrow	\rightarrow \rightarrow	$\rightarrow \rightarrow \rightarrow -$	→ small
	BIG ←	+ + ·		Small to Big - De			·	← small

Derived Units

 Additional SI units, called <u>derived units</u>, are made from combinations of base units

- For example:
 - Volume: the amount of space an object takes up
 - Density: ratio of object's mass to its volume

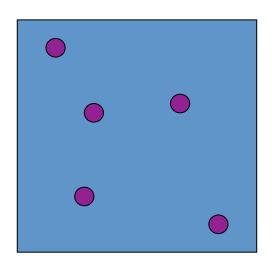
Density =
$$\frac{\text{Mass}}{\text{Volume}}$$

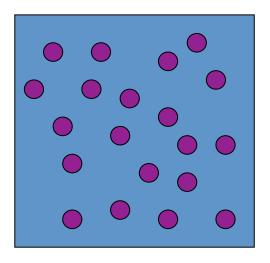
Derived Units

Specific combinations of SI base units make derived units.

	Derived Units				
Quantity	Unit	Symbol			
Area	square meter	m ²			
Volume	cubic meter	m ³			
Density	kilograms per cubic meter	kg/m ³			
Pressure	pascal (kg/m•s²)	Pa			
Energy	joule (kg•m²/s²)	J			
Frequency	hertz (1/s)	Hz			
Electric charge	coulomb (A•s)	С			

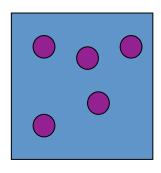
Density

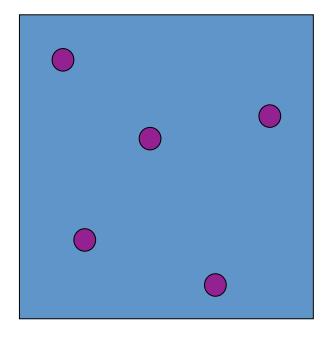

- Density: the mass per volume of an object
- Density is a comparison of how much matter there is in a certain amount of space.


SUBSTANCE	DENSITY (G/CM
AIR	0.0013
WOOD (OAK)	0.85
WATER	1.00
ICE	0.93
ALUMINUM	2.7
LEAD	11.3
GOLD	19.3


Density =
$$\frac{\text{Mass}}{\text{Volume}}$$

Which one is more dense?

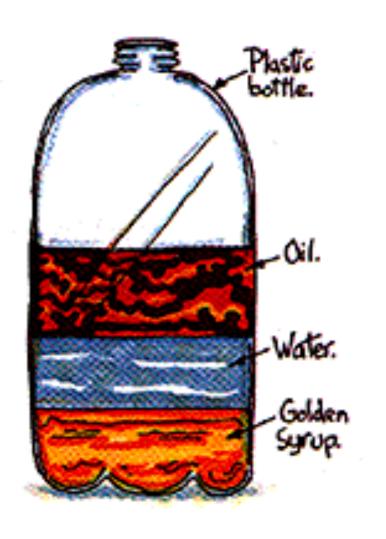




Which one is more dense?

Now which one is more dense?

Liquid Layers


- If you pour together liquids that don't mix and have different densities, they will form liquid layers.
- The liquid with the highest density will be on the bottom.
- The liquid with the lowest density will be on the top.

Liquid Layers

- Check out this picture from your book. Which layer has the highest density?
- Which layer has the lowest density?
- Imagine that the liquids have the following densities:
 - 10g/mL. 3g/mL.
 - 6g/mL. 5g/mL.
- Which number would go with which layer?

Liquid Layers – Try with your neighbor

Which liquid has the highest density?

Which liquid has the lowest density?

Which liquid has the middle density?