\qquad
\qquad Date: \qquad

Practice with DNA Replication

DNA REPLICATION

Two
semi-conservative

Sugar-Phosphate Backbone formed connecting nucleotides in the two new strands

Step 1: The Double Helix unwinds and the 2 halves "up-zip" with the help of an enzyme called Helicase.

Step 2: Complementary base pairs are inserted into the unzipped DNA strand matching bases on the parent strand by an enzyme called DNA polymerase.

Step 3: DNA reforms double helix. The result is two EXACT copies of the original strand of DNA.

Step 1: Original Strand of DNA

Step 2: DNA Undergoing Replication

DNA UNDERGOING REPLICATION
Fill in the new nitrogen bases.

1. Fill in the new nitrogen bases above to begin the complementary base pairing.
\qquad
\qquad Date: \qquad
2. Below show the base pairing that results in the new strands of DNA. (Step 3)

STRAND \#1
A
T \qquad
C
G
A
T \qquad
G
C
T
C

STRAND \#2T
_ A
G
C$\square \mathrm{C}$
\square T
\qquad C

$\ldots \mathrm{G}$
3. How do these new strands compare to each other?
4. How do these new strands compare the original strand?
\qquad
5. What is the building block of a DNA molecule?
\qquad
6. What are the names of the enzymes that help in the process of replication?
\qquad
7. The point at which two strands of DNA are separated to allow replication of each strand is called \qquad .
8. List and describe the three steps of DNA Replication
a. Step 1:
b. Step 2:
c. Step 3:

