Scientific Thinking

Thinking Like a Scientist

Scientific thinking begins with observation.

 Observation is the process of gathering information about events or processes in a

careful, orderly way.

Scientific Method

- Involves a series of steps that are used to investigate a natural occurrence:
 - 1. Observe things.
 - 2. Ask a question.
 - 3. Form a hypothesis.
 - 4. Set up a <u>controlled</u> experiment
 - 5. Collect data and Analyze Results
 - 6. Draw a conclusion.

1. Observe things.

- What do you observe in this picture?
- Inference or conclusion: based on observations.

1. Observe things.

Scientists use data to make inferences.

An **inference** is a logical interpretation based on prior knowledge or experience.

Copyright Pearson Prentice Hall

1. Observe things.

- The information gathered from observations is called data.
 - 1. Quantitative data
 - 2. Qualitative data

2. Ask a question.

- Careful observations lead to questions.
- Your question should compare things.
 - Does the height you drop a ball from affect the height it bounces?

3. Form a hypothesis.

- What we think will happen in the experiment.
- A statement that expresses the <u>expected</u> answer.
- A hypothesis can be proven right OR wrong.
- "If..., then..." statement.
 - If we drop the ball from a greater height, then the ball will bounce higher.

3. Form a hypothesis.

- How do scientists test hypotheses?
- A hypothesis should be tested by an experiment in which only one variable is changed at a time.

4. Set up an experiment

- Tests the hypothesis to answer your question.
- Compares the <u>independent</u> variable to the <u>dependent</u> variable.
- Experiments can only test one <u>dependent</u> variable at a time.

Variables, Example

 Growth of Plants: does more sun make a difference?

• <u>8 hours of sun</u> vs. <u>4 hours of sun</u>. Which plant will grow more quickly?

Dependent Variable
= growth of plant.

Independent Variable

= amount of sun.

Variables

- A variable is something that changes.
- 2 types of variables:
 - Dependent = value changes depending on other factors; value is NOT known at the beginning of the experiment.
 - Independent = we change, manipulate; value is known at the beginning of the experiment.

Controls

- A control is something that is kept constant.
- Controls are kept the same through the experiment:
 - What did we <u>control</u> in our 'ball height' experiment example?
- Controlled Experiment: tests only 1 variable.
 - Why is this important?

5. Collect and Analyze Results

- Run experiment and collect data
 - Drop ball from certain height and record bounce height.
 - Drop ball from a different height and record bounce height.
- How do the results compare?
 - Does the height you drop a ball from affect the height it bounces?

6. Conclusion Statement

- Presents findings of the experiment.
- Was hypothesis correct? Incorrect?
 - Does the height you drop a ball from affect the height it bounces?
- Hypothesis is either supported or not.
- If hypothesis is wrong, a new one can be stated and tested.

Question Everything!

- Scientific understanding is always changing.
- Good scientists are skeptics who question both existing ideas and new hypotheses.

