TAXONOMY

The science of naming organisms.

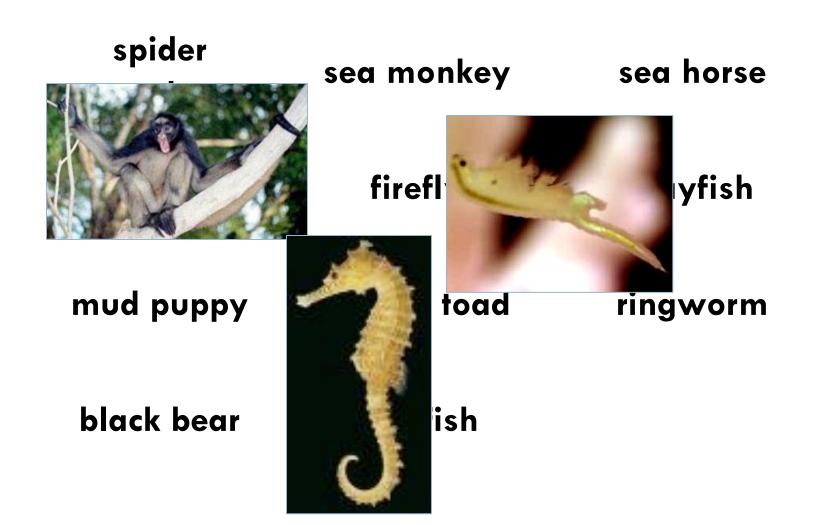
Why do we need a system to classify and name organisms?

Diversity

<u>Natural selection</u> makes new species – this <u>increases biodiversity</u> on the planet.
 <u>Biodiversity</u> = the number of different species

that are present in a certain area.

1.5 million species have been identified so far - they estimate that millions of species are <u>not yet discovered</u>.


Copyright Pearson Prentice Hall

Why do we Classify?

- <u>Taxonomy</u>: the science of naming and classifying organisms.
- To study the diversity of life, biologists <u>group organisms</u> <u>based on how they are the same (similarities).</u>
- □ WHY IS IT IMPORTANT TO CLASSIFY?

Why do we Classify?

Taxonomic Hierarchy

- Carolus Linnaeus came up with the system we use to organize animals.
 - Organisms are put in categories based on their relationships from very broad to very specific.
- □ This system uses <u>large groups divided into</u> <u>smaller groups (subgroups) called **taxa**.</u>
- The organisms with <u>the most similar groups will</u> <u>be most closely related</u>.

Linnaeus' System of Classification

- Kingdom (<u>biggest</u>)
- □ Phylum
- Class
- 🗆 Order
- **Family**
- 🗆 Genus
- □ Species (most specific)

These are <u>categories</u> used to organize species.

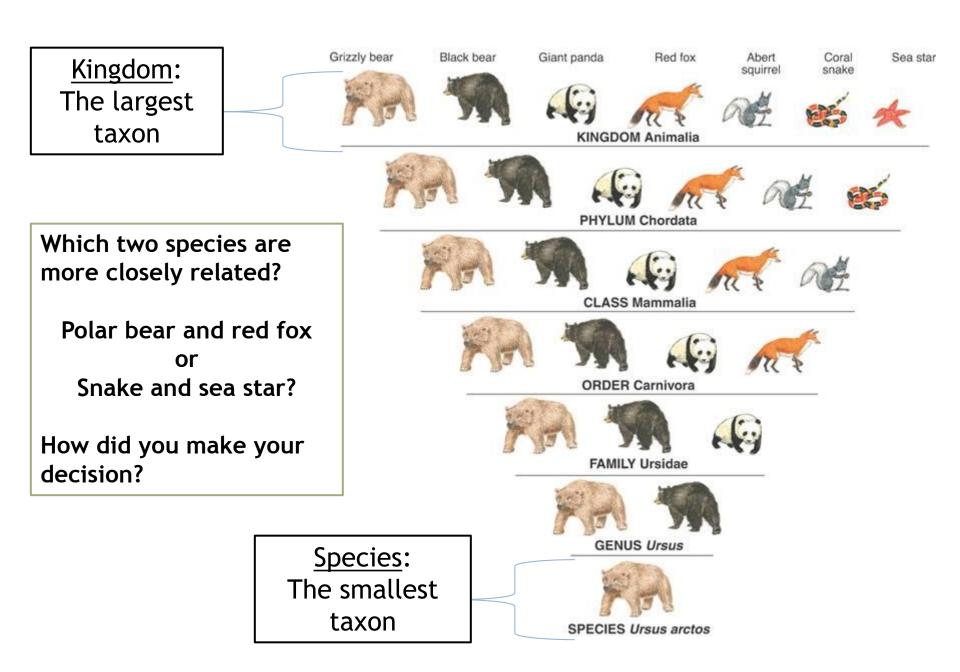
Naming Organisms

- □ All organisms have <u>a common & scientific name</u>
- all organisms <u>have only 1 scientific name!</u>
 usually Latin or Greek
- Linnaeus' system described organisms with twoword names:

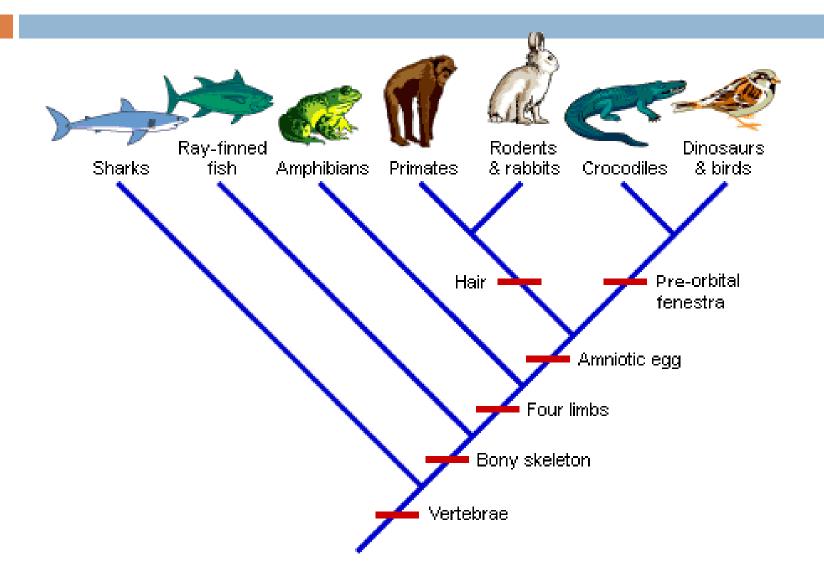
binomial nomenclature

Binomial Nomenclature

- Scientific Name = <u>genus + species</u>
 - First word = genus name
 - Second word = species name
 - Ex: Homo sapiens; <u>Homo sapiens</u>
- Scientific names are always underlined or in italics

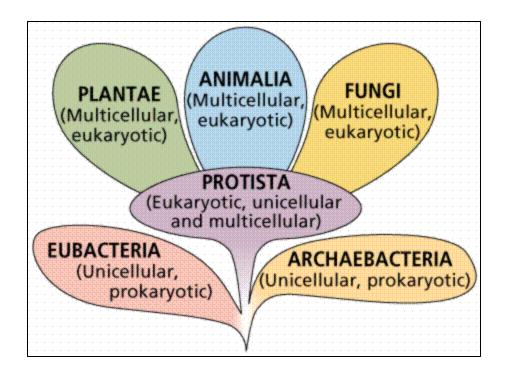

Binomial Nomenclature

- Canis lupus
- Felis domesticus
- 🗆 Pan pan
- Homo sapiens



	Human	Lion	Tiger	Pintail Duck
Kingdom	Animalia	Animalia	Animalia	Animalia
Phylum/Division	Chordata	Chordata	Chordata	Chordata
Class	Mammalia	Mammalia	Mammalia	Aves
Order	Primate	Carnivora	Carnivora	Anseriformes
Family	Homindae	Felidae	Felidae	Anatidae
Genus	Ното	Panthera	Panthera	Anas
Species	sapiens	leo	tigris	acuta

Why is Taxonomy Useful?


- □ Helps stop confusion within scientists.
- □ Helps to show how organisms are related.
- Can be used to figure out <u>phylogenies</u> evolutionary histories – of an organism or group.

Phylogenic Trees

The 6 Kingdoms

- 1. Eubacteria
- 2. Archaebacteria
- 3. Protista
- 4. Fungi
- 5. Plantae
- 6. Animalia

How are organisms placed into their kingdoms?

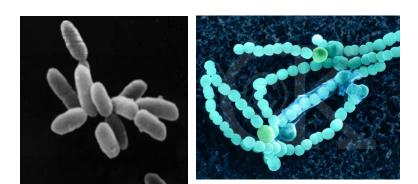
Characteristics of Each Domain and Kingdom

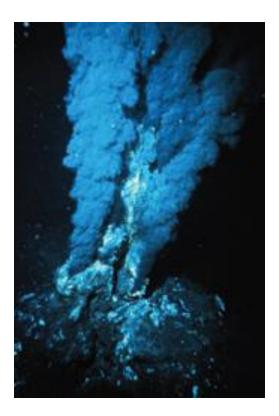
Domain	Kingdom	Prokaryotic/Euk aryotic	Cell walls (yes/no)	Multicellular/ unicellular ?	Autotroph/ heterotroph	Other info/example
Archaea						
Bacteria						
E. J. e. m. e						
Eukarya						

The 6 Kingdoms

How are organisms placed into their kingdoms?

- How many cells? (one or multi-)
- Cell type: complex or simple?
- How do they make food?
 - •<u>Autotroph</u> produces its own food
 - •<u>Heterotroph</u> feeds on other organisms

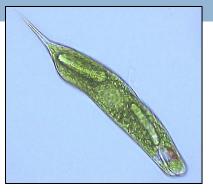

The 6 Kingdoms – 2 main categories


A. Prokaryotes (simple organisms)

- Archaebacteria
- Eubacteria
- **B. Eukaryotes** (more complex organisms)
 - All other kingdoms

1. ARCHAEBACTERIA

- Prokaryotic
- Cell walls
- Simple organisms (single cell)
- <u>Autotroph/heterotroph</u>
- Ancient bacteria
- Found in extreme environments
 - thermal vents, conditions with no oxygen


2. EUBACTERIA

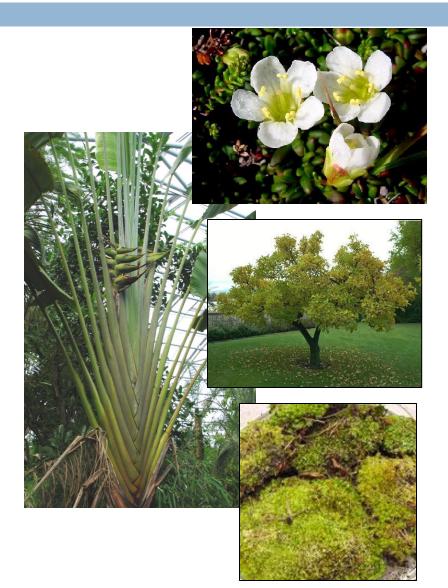
- Prokaryotic
- Cell walls
- Simple organisms (single-cell)
- <u>Autotroph/heterotroph.</u>
- "Common bacteria" most bacteria are in this kingdom.
- Found everywhere.

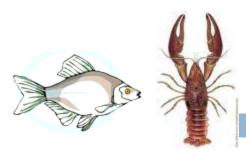
3. PROTISTA

<u>Eukaryotic</u>

- Cell walls
- More complex (<u>uni and multicellular</u>)
- Autotroph/heterotroph.
- Slime molds and algae are protists.
- Members are very diverse.
- include all <u>microscopic</u> organisms that are not bacteria, not animals, not plants and not fungi.

4. FUNGI


- <u> Eukaryotic</u>
- Cell walls
- Complex organisms
- Mostly <u>multicellular</u>
- Heterotrophs fungi cannot make their own food get their food from parts of plants that are decaying in the soil.
- Mushrooms, mold are examples



5. PLANTAE

- <u>Eukaryotic</u>
- Cell walls
- Complex & <u>multi-cellular</u>
- Autotrophic
- Contains <u>ALL</u> of the plants
- Over 250,000 species
- Plant kingdom is the <u>second</u> <u>largest kingdom</u>.
- Species range from the tiny green mosses to giant trees.

6. ANIMALIA



- <u>Eukaryotic</u>
- □ <u>No cell walls</u>
- Complex & <u>multi-cellular</u>
- Heterotrophs
- <u>The largest kingdom.</u>
- Over 1 million known species.

Kingdom Characteristics							
Domain	Bacteria	Archaea	Eukarya				
Kingdom	Bacteria	Archaea	Protista	Fungi	Plantae	Animalia	
Example	Pseudomonas	D. radiodurans	Paramecium	Mushroom	Moss	Earthworm	
Cell type	Prokaryote		Eukaryote				
Cell walls	Cell walls with peptidoglycan	Cell walls without peptidoglycan	Cell walls with cellulose in some	Cell walls with chitin	Cell walls with cellulose	No cell walls	
Number of cells	Unicellular		Unicellular and multicellular	Most multicellular	Multicellular		
Nutrition	Autotroph or heterotroph		ph	Heterotroph	Autotroph	Heterotroph	